Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Clin Chim Acta ; 536: 6-11, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2031180

RESUMEN

BACKGROUND: Tracking SARS-CoV-2 variants of concern (VOC) by genomic sequencing is time-consuming. The rapid screening of VOCs is necessary for clinical laboratories. In this study, we developed a rapid screening method based on multiplex RT-PCR by extended S-gene target failure (eSGTF), a false negative result caused by S-gene mutations. METHODS: Three S-gene target (SGT) regions (SGT1, codons 65-72; SGT2, codons 152-159; and SGT3, codons 370-377) and an N-gene region (for internal control) were detected in single-tube. Four types of VOC (Alpha, Delta, Omicron BA.1, and Omicron BA.2) are classified by positive/negative patterns of 3 S-gene regions (eSGTF pattern). RESULTS: The eSGTF patterns of VOCs were as follows (SGT1, SGT2, SGT3; P, positive; N, negative): Alpha, NPP; Delta, PNP; Omicron BA.1, NPN pattern; and Omicron BA.2, PPN. As compared with the S-gene sequencing, eSGTF patterns were identical to the specific VOCs (concordance rate = 96.7%, N = 206/213). Seven samples with discordant results had a minor mutation in the probe binding region. The epidemics of VOCs estimated by eSGTF patterns were similar to those in Japan. CONCLUSIONS: Multiplex RT-PCR and eSGTF patterns enable high-throughput screening of VOCs. It will be useful for the rapid determination of VOCs in clinical laboratories.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuencia de Bases , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética
2.
Clin Chim Acta ; 530: 94-98, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1739591

RESUMEN

INTRODUCTION: Genomic surveillance of the SARS-CoV-2 virus is important to assess transmissibility, disease severity, and vaccine effectiveness. The SARS-CoV-2 genome consists of approximately 30 kb single-stranded RNA that is too large to analyze the whole genome by Sanger sequencing. Thus, in this study, we performed Sanger sequencing following long-range RT-PCR of the entire SARS-CoV-2 S-gene and analyzed the mutational dynamics. METHODS: The 4 kb region, including the S-gene, was amplified by two-step long-range RT-PCR. Then, the entire S-gene sequence was determined by Sanger sequencing. The amino acid mutations were identified as compared with the reference SARS-CoV-2 genome. RESULTS: The S:D614G mutation was found in all samples. The R.1 variants were detected after January 2021. Alpha variants started to emerge in April 2021. Delta variants replaced Alpha in July 2021. Then, Omicron variants were detected after December 2021. These mutational dynamics in samples collected in the Chiba University Hospital were similar to those in Japan. CONCLUSION: The emergence of variants of concern (VOC) has been reported by the entire S-gene analysis. As the VOCs have unique mutational patterns of the S-gene region, analysis of the entire S-gene will be useful for molecular surveillance of the SARS-CoV-2 in clinical laboratories.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA